Alliance Optimises Algae Fuel Search

The Washington State Algae Alliance, comprised of bioscience firm Targeted Growth, Inc. (TGI), Inventure Chemical (Inventure) and Washington State University (WSU), will benefit from $2 million in funding through WSU as part of the 2010 Senate Energy and Water Development appropriations bill.

The Alliance has three objectives: First, to develop an efficient and integrated algae cultivation system for the production of fuel and other products; second, to build first class capabilities; and third, to advance related science and technologies. These objectives align with initiatives identified in the National Algae Fuel Roadmap developed by the US Department of Energy.

Each partner in the Alliance is responsible for developing a specific link in the value chain. Targeted Growth will focus on the development and optimization of strains of cyanobacteria, a blue-green algae, to yield high levels of lipid and other products, while reducing needed inputs and ultimately driving down costs.

WSU will develop advanced phototrophic (light) and heterotrophic (nutrient) bioreactors and harvesting technology to enable cost-efficient, year-round growth of the algal strains developed by TGI. After the algal biomass is harvested, it will be sent to Seattle-based Inventure for conversion into fuel and other valuable products such as renewable chemicals.

“By closely coordinating the algal species selection with the production and refining technologies, we will be able to optimize the entire process, leading to higher quality products at a lower cost,” said Mark Tegen, CEO of Inventure Chemical.

Read More: http://bit.ly/4Gyle8

Advertisements

PetroSun launches First US commercial scale Algae farm for Biofuel

In Texas, PetroSun will open the first US commercial-scale algae farm for biofuels near South Padre Island. The 1,831 acre site includes 157 separate ponds, and the company said that extraction of algae from water and oil from algae were studied and solved at the company’s pilot farm in Opelika, Alabama. PetroSun said that results from the pilot farm demonstrated a yield of between 5,000 and 8,000 gallons per acre, or a potential oil production of 9-15 Mgy at the South Padre Island facility.

Algae-based research and development continues to pick up in pace, even though the US Defense Department is estimating that the current production cost of algae oil exceeds $20 per gallon.

Recent developments include:

Netherlands, AlgaeLink announced a new process for extracting algae without using chemicals, drying or an oil press. The company said that its patent-pending technique uses 26 kilowatts of power to produce 12,000 gallons of algae oil per hour, with a yield of 50 percent from the initial algae paste.

In Texas, the state’s Emerging Technology Fund will provide $4 million to Texas AgriLife Research and General Atomics
to conduct microalgae research and development.

In Virginia, researchers at Old Dominion University have successfully piloted a project to produce biodiesel feedstock by growing algae at municipal sewage treatment plants. The pilot project is producing up to 70,000 gallons of biodiesel per year.

In Minnesota, Xcel Energy has pledged $150,000 to assist in funding an algae to biodiesel research project sponsored by the University and the Metropolitan Council.

The US Department of Energy recently partnered with Chevron in a research effort to develop higher-yield strains of micro algae.  The Defense Advanced Research Projects Agency is working on a project with Honeywell, General Electric and the University of North Dakota.

In Texas, US Sustainable Energy is awaiting lab results from a test of biocrude production using 20 pounds of algae as a feedstock. The company recently ran its initial test of 20 pounds of 5% oil-content algae feedstock with 40 percent water content, and resulted in an ignitable oil product. This is just the tip of the iceberg.A lot more action is expected in the future.

Read More: http://bit.ly/7NFp1u

Algae Biodiesel – Fuel of the 21st century

The potential of biodiesel to revolutionize our energy industry is enormous, not to mention the economic opportunities for farming nations that depend on the agricultural industry to survive. Many of these nations have begun to plant many acres of oil rich crops that are then sold to make biodiesel all over the world.

The real opportunity for biodiesel to save our energy dependent society lies in algae. Algae has proven to be capable of a higher yield per acre of biodiesel convertible oil than any other plant. With time and effective engineering of an efficient algae farming method, we will be able to utilize the solar energy more efficiently than ever, and we will easily be able to answer the worlds energy needs with biodiesel.

Biodiesel may not be the holy grail of energy sources, but it comes pretty close in these times of oil wars and a rapidly depleted ozone layer. Perhaps you should look into biodiesel as your personal alternative fuel today. The more informed we are as a society, the brighter the future may be for our children.

What’s more Biodiesel is not the fuel of tomorrow, I dare to say it is the fuel of today.

Read More: http://bit.ly/4Atgqp

NASA Ames Pilot Project in Florida

In California, researchers with the NASA Ames Research Center at Moffett Field are advancing in plans to deploy an ocean-based algal fuels platform. The OMEGA project deploys flexible floating plastic bags, up to a quater-acre in size – pumped with wastewater and then cleansed and harvested by barges every ten days.

The bags would release purified water via membranes on the sids of the quarter-acre bags. The project, which has received support from Google, the California Energy Commission, and NASA, is aiming towards a pilot-scale version in closed ponds, with locations near San Francisco and Santa Cruz in future deployments.

Nevada-based Algae Systems has licensed the technology and is developing a project in Tampa Bay, Florida. Looks like Omega project is drawing a lot of attention.

Read More: http://bit.ly/5yfYHP

NASA Ames Research Center makes biofuel from wastewater

NASA has thrown its weight behind a clever method of growing algae in wastewater for the purpose of making biofuel.onathan Trent, a bioengineer at NASA Ames Research Center in Moffett Field, Calif comments that the forward-osmosis membranes OMEGA only release fresh water into the ocean, and dont permit salty water to contaminate the bags.

Such a process would mainly rely on the energy of the ocean waves to mix the algae, as well as sunlight and carbon dioxide. The offshore locations and the wide oceans would also have more than enough room to grow massive amounts of algae needed to produce biofuels for an energy-hungry world.

One possible future plan would combine the algae-growth system with a gigantic offshore wind farm being built by Germany, Sweden and Denmark. Wind power could then provide lights to keep algae growing underwater and during the nighttime hours – a fitting vision for the sustainable future of spaceship Earth.

Its renewable carbon negative fuel from algae making use of sunlight,sewage and co2 – a solution for today’s problem.

Read More: http://bit.ly/4quZQy

Algae buildings solves Climate issues

The future of green technology is algae-cultivating buildings, synthetic trees, and heaps of white roofs, according to the U.K.’s institution of Mechanical Engineers. Andrew McFaul.

Cultivating algae to make liquid fuel is one of the most active areas of study in biofuels. The institution is recommending that algae be amalgamated into buildings so algae can be grown at a big scale.

How synthetic trees, which capture carbon from the air, could be deployed alongside wind turbines.

Engineers envision that long plastic tubes, called photobioreactors, be integrated into building designs or retrofitted onto existing skyscrapers.

Energy Secretary Steven Chu has in public offered this comparatively low-tech approach, which was studied in-depth at the Lawrence Livermore lab last year.

The shape of things to come?Climate issues fixed by these algae covered buildings.

Read More: http://bit.ly/73XIdx

Green Algae ushers in paper batteries

After nanofarming of algae to suck out oil from algae, now nano batteries from algae!

Scientists are working on the development of paper-based batteries made from algae to power electronics in the future.

A report in Live Science says that scientists from around the world are working towards developing thin, flexible, lightweight, inexpensive, environmentally friendly batteries made wholly from nonmetal parts. Among the most hopeful materials for these batteries are conducting polymers.

However, until now these are not viable for use in batteries – for example, their ability to hold a charge often reduces over use. The answer to this new battery turned out to be green algae called Cladophora. This algae makes an unusual kind of cellulose characterised by a very large surface area ? 100 times that of the cellulose found in paper.

This permitted the researchers to considerably increase the amount of conducting polymer available for use in the new device, allowing it to recharge better, hold and discharge electricity.
That is very interesting.

“We have long hoped to find some sort of constructive use for the material from algae blooms and have now been shown this to be possible,” said researcher Maria Stromme, a nanotechnologist at the famous Uppsala University, Sweden.

The new batteries comprised extremely thin layers of conducting polymer just 40 to 50 nanometers in width, coating algae cellulose fibres only 20 to 30 nanometers wide that were gathered into paper sheets.

They could hold 50-200 percent more charge than similar conducting polymer batteries and once better optimised, they might even be competitive with commercial lithium batteries, the researchers noted. They also recharged much faster than the usual rechargeable batteries.

Recharge in quick time:

While a regular battery takes at least an hour to recharge, the new batteries could recharge in 8-11 seconds. The new battery also showed a remarkable increase in the ability to hold a charge over use.

While a comparable polymer battery showed a 50 percent dip in the amount of charge it could hold after 60 cycles of discharging and recharging, the new battery showed just a 6% dip through 100 charging cycles. The researchers proposed that their batteries may be suitable for applications concerning flexible electronics like clothing and packaging.

Imagine a thin birthday card singing a song! These paper batteries are environmental friendly.

Read More: http://bit.ly/5wSxQy